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1. INTRODUCTION 
Recently, a general model for prediction flow regime transition in horizontal and near horizontal 
gas-liquid flow was presented (Taitel & Dukler 1976a). Although the model was quite general it 
was limited to smooth pipes. The purpose of this note is to extend the aforementioned work to 
include the effect of roughness. 

2. ANALYSIS 
The analysis is based on the model presented in Taitel & Dukler (1976a); thus only 

modification needed to include roughness will be presented. 
The general approach is to consider an equilibrium flow in a pipe, to calculate the 

equilibrium level in the pipe for given flow rates of gas and liquid and to examine whether this 
configuration is stable, and if not, to predict the mechanism of transition and the resulting flow 
pattern. 

The starting point of the analysis is a momentum balance on each phase, assuming 
equilibrium stratified flow; thus for the liquid phase, we obtain 

-AL (dP) - ¢wLSL + ,'~$~ + pLAtg sin a = O [l] 

while for the gas phase 

-Aa(-~x ~ - ewoSo - ¢iSi + poAog sin a = 0 [21 

is valid. 
In these equations A is the flow cross sectional area, rw is the stress at the wall, and S is the 

perimeter over which the stress acts. The subscript L refers to liquid, G to gas and i to the 
interface, a is the angle between the pipe axis and the horizontal, positive for down flow and g 
is the acceleration of gravity. 

If the pressure gradient dP/dx is eliminated, one gets a single equation for the liquid level in 
the pipe. The derivation is along the same lines as presented by Taitel & Dukler (1976a) and 
details are omitted. The final equation in a dimensionless form can be written as follows: 

[3] 
fLS t~L lOS Ao Fos k Ao 

The dimensionless variables are designated by a tilde (7). The perimeters S are normalized 
with respect to the diameter D, area is scaled by D 2, the liquid average velocity Ut. is 
normalized by the superficial liquid velocity Uts; likewise the gas velocity is scaled by Uas (S 
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being a subscript to indicate superficial flow, namely, when only one phase is flowing) ft. is the 
friction-factor coefficient defined by 

• wL [LPL--lf L" = [4] 

likewise 

¢ PGUG 2 = [ P G U G  2 
r w ~ = j c  5 r; • - [51 

while [Ls, .f~s are the coefficients that refer to the flow of a single phase, liquid or gas, 
respectively. X is Martinelli parameter defined by 

4 2 ¢ pLULs 
X 2=-DJLs ~ _ (dPIdx)£s 

fGs paU~s - (dPldx)as 
2 

161 

and 

y = (PL - P o ) g  s in  a 
(dPldx)cs 171 

Equation [3] has to be solved for the equilibrium liquid level/~£ = hLID in the pipe. Note that all 
variables with the superscript-depend on /~£; thus the solution of [3] depends on Martinelli 
parameter X, the inclination parameter Y and the ratios [£][£s, [alias and .Ht"as. 

Fortunately it seems that in practice the above mentioned ratios are relatively weak 
functions of the dependent variables and fairly close to unity. As a result we expect the solution 
for/~£ to be fairly independent of these ratios. 

Taitel & Dukler (1976a) considered smooth tubes where the friction factor can be correlated 
by the Blasius equation, namely by: 

: L : C L ( O L V q  -" :o:Co( °Vq -° I81 
\ U L , I  k i t  G I 

where CL, Co and n, m were taken as 16 and 1 for laminar flow respectively and 0.046 and 0.2 
for turbulent flow. Note that DL and Da are the hydraulic diameters; thus DL = 4AdSL  for the 
liquid and Da = 4 A d ( S 6  + Si) for the gas. Furthermore, it was shown (Taitel & Dukler 1976b) that 
[i[l"a --- 1 is a workable assumption; thus, in this case JfL/[LS = (/SLOD -n while 1:alias = lilies = 
(/Sa/.Ja) -'~. The solution has been found fairly the same for the four combinations of turbulent 
liquid-turbulent gas, turbulent liquid-laminar gas, laminar liquid-turbulent gas and laminar liquid 

and gas. 
Considering now rough tubes, an expression for f valid for a wide range of Reynolds 

number Re is 

_1_1 = ~ / f  3.48_41ogl0 ( 2 D +  ~)9.35 [9] 

where d D  is the relative roughness. 
Equation [9] is somewhat complex to use, since the friction factor [ is given implicitly. If, 
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however, we consider the limiting case of large Reynolds number, [ is given explicitly and 
[dfhs = [d[os = 1. A solution for this case (for fJ[o = 1) is shown in figure 1 by the broken line 
as it is compared with the solution of turbulent--turbulent flow in smooth tubes. As expected, it 
demonstrates again that indeed the solution for the liquid level hdD is fairly unique function of 
X and Y. 

Considering now transition boundaries among five basic flow patterns: stratified smooth, 
stratified wavy, intermittent (slug and plug), annular and dispressed bubble as outlined in Taitel 
& Dukler (1976a), one can observe that conditions of transition are the same for all transition 
lines except for that of the transition between the intermittent to the dispersed bubble flow 
pattern. Following the derivation for the condition that leads to such transition in the general 

case yields 

T 2 8ii'a {10] 

where 

r (dP/dX)Ls ]1/2 
T = LipL_-~)e ~o s • 

I l l ]  

For rough tubes and large Reynolds number [d/LS = 1. As can be seen, [dfLS is very 
close to unity also for smooth tubes (especially since this transition occurs for relatively high 
liquid flow rate, where the flow of liquid is close to the flow of a single phase). 

The consequence of this analysis leads to the conclusion that the prediction for flow pattern 
transition for smooth tubes in terms of the five dimensionless parameters X, Y, F, T and K 
(Taitel & Dukler 1976a) is also valid for rough pipes provided that (dPldx)~ and (dHdx)as is 
calculated for rough pipes. Likewise our generalized map presented for horizontal pipes where 
all transition lines are mapped on a single two dimensional plot is also applicable for rough 
pipes. 

To further demonstrate the effect of roughness, figure 2 shows a map where the superficial 
velocities of the liquid Uts and gas [Sos are used as coordinates. In this figure the transition 
lines for smooth and rough pipes are considered. For rough pipes, [9] was used (not limited to 
large Re). The results show that the only noticeable difference is the intermittent-dispersed 
bubble transition. 
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Figure !. Equilibrium liquid level for stratified flow (turbulent smooth and turbulent rough). 
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Figure 2. Effect of roughness on transition boundaries, water-air, 25°C, I atm, 5 cm diam., horizontal. 

This is actually what we would expect on physical grounds. Since roughness affects both 
liquid and gas pressure drop, we expect little change in equilibrium liquid level in the pipe (or 
liquid hold up). As a result most transitions are also insensitive to roughness. This excludes the 
transition between intermittent and dispersed bubble. As pointed out by the theory, this 
transition occurs when turbulent pressure fluctuations exceed buoyancy forces. For rough 
pipes, enhancement of turbulence leads to transition to dispersed bubble at lower liquid flow 
rate compared to the case of smooth tubes. 

For inclined pipes, however, we expect all transitions to be affected by roughness. This is 
because roughness increases frictional pressure drop while the gravitational one remains 
unaffected by roughness. Indeed, figure 3 shows that roughness causes early transition to 
intermittent or annular flow patterns for increasing liquid and gas flow rates. 

Allhough no generalized map is provided for transition boundaries with inclination, since 
this requires mapping of transition lines with respect to three dimensionless variable, it is easy 
to use the equations for the transitions directly. 

S U M M A R Y  A N D  C O N C L U S I O N S  

The method of predicting the flow pattern (Taitel & Dukler 1976a) has been extended to 
rough pipes. It has been demonstrated that the generalized map as presented in the aforemen- 
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Figure 3. Effect of roughness on transition boundaries. Water-air, 25°C, 1 atm. 5 cm diam., downflow 1 °. 
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tioned method is directly applicable provided that (dP/dx)~ and (dPldx)os that appear in the 
MartineUi parameter X and the dimensionless variable Y [7] are calculated for rough pipes. 

Effect of roughness has been shown to be negligible in the horizontal case for all transition 
boundaries except for the intermittent-dispersed bubble transition. For inclined pipes the effect 
of roughness is shown to affect all transition boundaries. 
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